Non Deterministic Automata

Nondeterministic Finite Accepter (NFA)
Afprabet $=\{a\}$

Nondeterministic Finite Accepter (NFA)
ALphabet $=\{a\}$

Nondeterministic Finite Accepter (NFA)
ALphabet $=\{a\}$

First Choice

First Choice

First Choice

Second Choice

Second Choice

Second Choice

\mathcal{N} (transition:
the automaton fangs

Second Choice

Observation

$\mathcal{A n} \mathfrak{N F A}$ accepts a string
if
there is a computation of the $\mathfrak{N F F}$
that accepts the string
$a a$ is accepted by the $\mathcal{N F} \mathcal{F}$:

ambda Transitions

$$
\rightarrow q_{0} \xrightarrow{a}\left(q_{1} \xrightarrow{\lambda} \xrightarrow{a} \xrightarrow{q_{1}}\right.
$$

$\rightarrow \xrightarrow{a} \xrightarrow{a} \xrightarrow{a} \xrightarrow{\left(q_{1}\right)}$

(read head doesn't move)

$\rightarrow q_{0} \xrightarrow{a}\left(q_{1} \xrightarrow{\lambda} \rightarrow q_{2} \xrightarrow{a}\right.$

"accept"

String $a a$ is accepted

Language accepted: $L=\{a a\}$

Another $\mathcal{N F F}$ Example

$$
\begin{aligned}
& \downarrow \\
& \begin{array}{l|l|}
\hline a & b \\
\hline
\end{array} \\
& \hline
\end{aligned}
$$

"accept"

Another String

$\downarrow \stackrel{\square}{a|b| a \mid b}$

$$
\begin{aligned}
& \downarrow \\
& \begin{array}{|l|l|l|}
\hline a & b & a \\
\hline
\end{array} \\
& \hline
\end{aligned}
$$

$$
\left. \right\rvert\,
$$

$$
\left. \right\rvert\,
$$

\[

\]

\[

\]

\[

\]

\square

$$
\rightarrow q_{0} \rightarrow\left(q_{1} \xrightarrow{b} \xrightarrow{\text { "accept" }} \lambda \rightarrow q_{3}\right.
$$

Language accepted

$$
\begin{aligned}
L & =\{a b, a b a b, a b a b a b, \ldots\} \\
& =\{a b\}^{+}
\end{aligned}
$$

nother NFA Example

Language accepted

$$
\begin{aligned}
L & =\{\lambda, 10,1010,101010, \ldots\} \\
& =\{10\}^{*}
\end{aligned}
$$

$M=\left(Q, \Sigma, \delta, q_{0}, F\right)$

Q : Set of states, i.e. $\left\{q_{0}, q_{1}, q_{2}\right\}$
Σ : Input aplfabet, ie. $\{a, b\}$
$\delta:$ Transition function
$q_{0}:$ Initial state
$F:$ Final states

Transition Function δ

$$
\delta\left(q_{0}, 1\right)=\left\{q_{1}\right\}
$$

$$
\delta\left(q_{1}, 0\right)=\left\{q_{0}, q_{2}\right\}
$$

$$
\delta\left(q_{0}, \lambda\right)=\left\{q_{0}, q_{2}\right\}
$$

$$
\delta\left(q_{2}, 1\right)=\varnothing
$$

$$
\delta *\left(q_{0}, a a\right)=\left\{q_{4}, q_{5}\right\}
$$

$$
\delta^{*}\left(q_{0}, a b\right)=\left\{q_{2}, q_{3}, q_{0}\right\}
$$

It holds $\quad q_{j} \in \delta^{*}\left(q_{i}, w\right)$
if and only if
there is a walk from q_{i} to q_{j} with label W

$F=\left\{q_{0}, q_{5}\right\}$

(94) (95)
$\delta *\left(q_{0}, a a\right)=\left\{q_{4}, q_{5}\right\}$
$a a \in L(M)$

$$
F=\left\{q_{0}, q_{5}\right\}
$$

$\delta *\left(q_{0}, a b\right)=\left\{q_{2}, q_{3}, \underline{q_{0}}\right\} \quad a b \in L(M)$

$$
F=\left\{q_{0}, q_{5}\right\}
$$

$\delta *\left(q_{0}, a b a a\right)=\left\{q_{4}, q_{5}\right\} \quad a a b a \in L(M)$

$$
F=\left\{q_{0}, q_{5}\right\}
$$

$\delta *\left(q_{0}, a b a\right)=\left\{q_{1}\right\}$
$a b a \notin L(M)$

$$
L(M)=\{a a\} \cup\{a b\}^{*} \cup\{a b\}^{+}\{a a\}
$$

The language accepted by NFA M is:

$$
L(M)=\left\{w_{1}, w_{2}, w_{3}, \ldots\right\}
$$

where $\delta *\left(q_{0}, w_{m}\right)=\left\{q_{i}, q_{j}, \ldots\right\}$
and there is some

$$
q_{k} \in F \quad(\text { final state })
$$

$w \in L(M) \quad \delta^{*}\left(q_{0}, w\right)$

Equivalence of NFAs and DFAs

For DFAs or NFAs:
Machine M_{1} is equivalent to machine M_{2}

$$
\stackrel{\text { if }}{L}\left(M_{1}\right)=L\left(M_{2}\right)
$$

Examole

NFA M_{1}

$$
L\left(M_{1}\right)=\{10\}^{*}
$$

$L\left(M_{2}\right)=\{10\}^{*}$

Since $L\left(M_{1}\right)=L\left(M_{2}\right)=\{10\}^{*}$ ${ }^{\text {machines }} M_{1} \quad$ and $M_{2} \quad$ are equivalent

DFA M_{2}

Question:
$\mathcal{N} \mathcal{F A s}=\mathcal{D F A s} ?$
\uparrow
Same power?
Accept the same languages?

Equivalence of $\mathfrak{N F A s}$ and DFAs

Question: $\quad \mathcal{N F A S}=\mathcal{D F A s} \quad \mathcal{Y E S}!$
Same power?
Accept the same languages?

We will prove:

$$
\left\{\begin{array}{l}
\text { Languages } \\
\text { accepted } \\
\text { by } \mathfrak{N F A S}
\end{array}\right\}=\left\{\begin{array}{l}
\text { Languages } \\
\text { accepted } \\
\text { by DFAs }
\end{array}\right\}
$$

We will prove:

$$
\left\{\begin{array}{l}
\text { Languages } \\
\text { accepted } \\
\text { by } \mathfrak{N F A S}
\end{array}\right\}=\left\{\begin{array}{l}
\text { Languages } \\
\text { accepted } \\
\text { by DFAs }
\end{array}\right\}
$$

$\mathcal{N F A s}$ and $D \mathcal{F A}$ s fave the same computation power

$$
\begin{gathered}
\text { Step 1 } \\
\left\{\begin{array}{l}
\text { Languages } \\
\text { accepted } \\
\text { by NFAS }
\end{array}\right\} \Longrightarrow\left\{\begin{array}{l}
\text { Languages } \\
\text { accepted } \\
\text { by DiAs }
\end{array}\right\}
\end{gathered}
$$

$$
\begin{gathered}
\text { Step 1 } \\
\left\{\begin{array}{l}
\text { Languages } \\
\text { accepted } \\
\text { by NFAS }
\end{array}\right\} \Longrightarrow\left\{\begin{array}{l}
\text { Languages } \\
\text { accepted } \\
\text { by DiAs }
\end{array}\right\}
\end{gathered}
$$

Proof: Every $\mathcal{D F A}$ is also an $\mathfrak{N F A}$

$$
\begin{gathered}
\text { Step 1 } \\
\left\{\begin{array}{l}
\text { Languages } \\
\text { accepted } \\
\text { by } \mathcal{N F A S}
\end{array}\right\} \Longrightarrow\left\{\begin{array}{l}
\text { Languages } \\
\text { accepted } \\
\text { by DFAS }
\end{array}\right\}
\end{gathered}
$$

Proof: Every $\mathcal{D F A}$ is also an $\mathfrak{N F A}$

A language accepted by a $\mathcal{D F A}$
is also accepted by an NVFA

$$
\begin{gathered}
\text { Step 2 } \\
\left\{\begin{array}{l}
\text { Languages } \\
\text { accepted } \\
\text { by NFAS }
\end{array}\right\}<\left\{\begin{array}{l}
\text { Languages } \\
\text { accepted } \\
\text { by DiAs }
\end{array}\right\}
\end{gathered}
$$

$$
\left\{\begin{array}{l}
\text { Step } 2 \\
\left\{\begin{array}{l}
\text { Languages } \\
\text { accepted } \\
\text { by } \mathcal{N F A}
\end{array}\right\}<\left\{\begin{array}{l}
\text { Languages } \\
\text { accepted } \\
\text { by DiAs }
\end{array}\right\}
\end{array}\right.
$$

Proof: Any $\mathfrak{N F} \mathcal{F A}$ can be converted to an equivalent $\mathcal{D F A}$

Step 2

$\left\{\begin{array}{l}\text { Languages } \\ \text { accepted } \\ \text { by } \mathfrak{N F A s}\end{array}\right\}=\left\{\begin{array}{l}\text { Languages } \\ \text { accepted } \\ \text { by DFAS }\end{array}\right\}$

Proof: $\quad \operatorname{Any} \mathfrak{N} \mathcal{F A}$ can be converted to an equivalent $\mathcal{D F A}$
\mathcal{A} language accepted by an $\mathfrak{N F F A}$
is also accepted by a DFA

$D \mathcal{A F}$

$D \mathcal{F A}$

$$
\rightarrow\left\{q_{0}\right\} \longrightarrow a \longrightarrow\left\{q_{1}, q_{2}\right\}
$$

NFA to-DFA

NFA

DFA

NFA to-DFA

$D \mathcal{A}$

NFA to DFA

We are given an NFA

$$
M
$$

We want to convert it to an equivalent DFA

$$
M^{\prime}
$$

With

$$
L(M)=L\left(M^{\prime}\right)
$$

If the NFA has states

$$
q_{0}, q_{1}, q_{2}, \ldots
$$

the DFA has states in the powerset
$\varnothing,\left\{q_{0}\right\},\left\{q_{1}\right\},\left\{q_{1}, q_{2}\right\},\left\{q_{3}, q_{4}, q_{7}\right\}, \ldots$

1. Initial state of NFA:

$$
q_{0}
$$

Initial state of DFA:

$$
\left\{q_{0}\right\}
$$

$D \mathcal{A F}$

2. For every DFA's state

$\left\{q_{i}, q_{j}, \ldots, q_{m}\right\}$

Compute in the NFA $\delta *\left(q_{i}, a\right)$,
$\left.\delta *\left(q_{j}, a\right),\right\}=\left\{q_{i}^{\prime}, q_{j}^{\prime}, \ldots, q_{m}^{\prime}\right\}$
A $\mathrm{d} d \mathrm{~d}$ transition
$\delta\left(\left\{q_{i}, q_{j}, \ldots, q_{m}\right\}, a\right)=\left\{q_{i}^{\prime}, q_{j}^{\prime}, \ldots, q_{m}^{\prime}\right\}$

Example

NFFA

$\mathcal{D F A}$

Repeat Step 2 for all letters in alphabet, until no more transitions can be added.

Example

DFA

3. For any DFA state $\left\{q_{i}, q_{j}, \ldots, q_{m}\right\}$

If some q_{j} is a final state in the
NFA

Then, $\left\{q_{i}, q_{j}, \ldots, q_{m}\right\}$
is a final state in the DFA

Example

Theorem

Take NVF M

Apply procedure to obtain $\mathcal{D F A} \quad M^{\prime}$

Then M and M^{\prime} are equivalent:

$$
L(M)=L\left(M^{\prime}\right)
$$

We fave proven

$$
\left\{\begin{array}{l}
\text { Languages } \\
\text { accepted } \\
\text { by } \mathcal{N F A S}
\end{array}\right\}=\left\{\begin{array}{c}
\text { Languages } \\
\text { accepted } \\
\text { by DFAs }
\end{array}\right\}
$$

We fave proven

$$
\left\{\begin{array}{l}
\text { Languages } \\
\text { accepted } \\
\text { by } \mathfrak{N F A S}
\end{array}\right\}=\left\{\begin{array}{l}
\text { Languages } \\
\text { accepted } \\
\text { by DFAs }
\end{array}\right\}
$$

Regular Languages

We fave proven

$$
\left\{\begin{array}{l}
\text { Languages } \\
\text { accepted } \\
\text { by } \mathfrak{N F A s}
\end{array}\right\}=\left\{\begin{array}{l}
\text { Languages } \\
\text { accepted } \\
\text { by DFAs }
\end{array}\right\}
$$

Regular Languages

